Green Synthesized Silver Nanoparticles using Crocus sativus L Extract after reduces Prehepatocellular Carcinoma In Rats

Neran Ali Thamer¹, Lamia A. AL-Mashhedy², Basim.Sh.Ahmed³

¹ Iraqi Center for Cancer and Medical Genetics Research, Al-Mustansiria University
² College of Science, University of Babylon.
³ Faculty of medicine. Al-Mustansiria University.

Abstract:
In this study, the effects of green synthesized silver nanoparticles (Ag NPs) using crocus sativus L were investigated on the liver tissues of white albino rats after induced the prehepatocellular carcinoma using diethylnitrosamine. Thirty male albino rats weight (150-200) gm ,were used by dividing them into five groups, each group contains 6 rats. Group 1(control group) was given food and water like other groups by liberty. Group 2 was intraperitoneal injected with single dose of diethylnitrosamine200 mg/kg b. wt . Group 3 was intraperitoneal injected with a AgNPs 200 mg/kg b. wt for six weeks . Group 4 was intraperitoneal injected with single dose of diethylnitrosamine 200 mg/kg b. wt followed by, intraperitoneal injected with a AgNPs 200 mg/kg b. wt for six weeks ,Group 5 was intraperitoneally injected with a AgNPs 200 mg/kg b. wt for six weeks ,followed by intraperitoneal injected with single dose of Diethylnitrosamine200 mg/kg b. wt . All animals were sacrificed at the end of experiment. The histopathological studies revealed that group 1 have normal hepatocyte. Group2 have sever necrosis, fatty change, atypical cells and bile duct proliferation. Group 3, have normal hepatocyte cell with mild necrosis. Groups 4, have certain area of necrosis, inflammatory cells infiltration, congestion and mild fatty change, no atypical cells were seen. Group 5 the liver section showing certain area of necrosis, inflammatory cells infiltration, mild fatty change and no atypical cells.

Key words: Nanoparticles, Silver nanoparticles, Albino male rat, prehepatocellular carcinoma.

Introduction:
Nanotechnology known as the formation, utilization and installation of materials at a scale up to 100 nm in diameter (1). It was noted that physical and chemical properties change when decrease the particle size to nanoscale (2). Their characteristics based on specific features such as size, distribution, morphology (3) and high surface/volume ratio (4). Nanobiotechnology, an important branch of nanotechnology, it is the using of green methods for the synthesis of nanoparticles, which involve clean nontoxic chemicals, eco-friendly solvents and renewable materials ,it is alternative to the conventional physical and chemical methods (5). Silver nanoparticles (AgNPs) are the most quickly rising classes of nanoparticles which are the noble metal nanoparticles that have being used for studying extensively due to its various biological properties (6). Biological synthesis of AgNPs could have been implementation in the field of medicine particularly as anti-carcinogenic effect, drug carrier, diagnosis purposes, antibacterial, antifungal (7), antiviral (8) antioxidant and anti-inflammatory effects (9).

Hepatocellular carcinoma (HCC) is a highly malignant disease with poor prognosis, its account for 80% to 90% of primary liver cancer The rate of HCC in male are 2 to 4 times higher than in females (10). The major risk factors for HCC worldwide are chronic infection with hepatitis B and C, alcoholic and metabolic liver diseases(11).Other factors obesity, environmental pollutants, aflatoxin exposure(12), and nitrosamine consumption (13).

Diethylnitrosamine (DEN) is a potent hepatocarcinogen, produces primary metabolic activation resulting in initiation of liver carcinogenesis (14). It is used to study the effects of many drugs and treatment on hepatocellular carcinoma(HCC) (15). It is metabolized by P450 cytochrome enzyme to form unstable metabolites that react with DNA of cells results in mutation, forming promutagenic adducts leading to HCC.
In the current study, such an approach is used to assess the potential effects of AgNPs on the liver tissues after induce prehepatocellular carcinoma by using diethylnitrosamine.

Materials and Methods:

Diethylnitrosamine was obtained from Sigma Aldrich. Ag-NPs was synthesized using a green bio synthesis method by reducing AgNO3 solution with aqueous extract of crocus sativus L according to Thamer etal,2014.

Experimental Animals

Adult male albino rats with body weight of (150-200) gram, were obtained from Iraqi center of cancer and medical genetic research, were housed in plastic cages under controlled environmental conditions (24°C and a 12 h light/dark cycle) one week before starting the experiment as acclimatization period. The animals were fed with a standard diet and provided with drinking water and libitum.

Experimental design

30 adult male albino rats were divided into five groups with 6 animals in each group.

Group 1 (Control): Animals were injected intraperitoneal with 1 ml saline single dose.

Group 2 (HCC - Induced Untreated) (Positive control): Animals were induced for pre- HCC by a single intraperitoneal injection of DEN 200mg/kg body weight, dissolved in 25 ml normal saline (18). After 2-week recovery period, the promoter carbon tetrachloride (CCl4) (3ml/ kg body weight) single dose weekly subcutaneous injection for 6 weeks (19).

Group 3: Animals were injected intraperitoneally AgNPs 200mg/kg body weight daily for six weeks.

Group 4 (HCC - Induced Treated)(Therapeutic): Animals were induced for pre-HCC (as group 2). After the induction of pre- HCC by DEN ,animals were post treated with AgNPs 200 mg/kg body for six weeks.

Group 5 (Preventive): Animals were pre-treated with AgNPs daily (200 mg/kg body weight) for six weeks before they were induced for pre- HCC (as group 2).

All animals were sacrificed at the end of experiment.

Histopathology

The liver tissues specimens were collected and fixed in 10% formalin and histological preparations were carried out then stained with H&E. processed by paraffin method, cut at six micrometers in thickness by using rotary microtome and stained with Hematoxylin and Eosin (H&E) (20). Sections were examind by histopathologist with olumpis Microscope (japan). Photos were taken by digital camera (sony-japa 14 Migapixill).

Results:

Histopathological changes of liver are as follow. Control group, liver sections showed normal hepatic portal traid, central vein and normal hepatocytes (Figures 1).

In group 2, DEN and CCl4 induced precarcinogenic (G2) groups, there were an extensive loss of hepatic architecture, severe necrosis, fatty change, certain hepatic cells showing atypical cells change, and bile duct proliferation (Fig 2 A and B).
In group 3, the section of liver tissue showed normal hepatocyte cell with mild necrosis (Fig 3).

In the therapeutic groups 4, the liver section shows certain area of necrosis and inflammatory cells infiltration, congestion and mild fatty change, no atypical cells were seen (Fig 4).

In group 5 (preventive group), the liver section showing certain area of necrosis, inflammatory cells infiltration, mild fatty change and no atypical cells were seen (Fig 5).
The liver is the first organ to receive blood from the intestinal tract. A primary function of the liver is the biotransformation, detoxification, and excretion of xenobiotics, including carcinogens. The human liver is continually exposed to small doses of alkyl nitrosamines, such as dimethyl-nitrosamine (DMN). These compounds are present in ordinary foodstuffs (probably to a far greater extent) result from nitrosation of amines in the gut (21). Hepatocellular Carcinoma can be induced in the livers of laboratory animals by a variety of chemicals such as diethylnitrosamine (DEN) which is widely used chemical carcinogen in models of carcinogenesis of liver and esophagus. Hepatocellular carcinoma (HCC) is the third most common cause of cancer mortality worldwide (22).

Histopathological examination of liver detected that various alterations indicating the effect of silver nanoparticles including hepatocellular degeneration, necrosis and individual apoptosis were the most recognized hepatic changes that were dose dependent. Several studies confirmed that liver is the target organ for the effect of silver nanoparticles (23). Abdel-Hamid et al., studied the histopathological examination of liver biopsy. They showed some of reversible cell injury as severe fatty change, inflammatory cellular infiltrate, atypical cells, and severe (cell death) necrosis. Such findings strongly suggest the ability of DEN to initiate hepatocarcinogenesis with the interactive effect of CCl4 (24). The histological features suggested that AgNPs is effective in reducing DEN-induced hepatocarcinogenesis in a dose dependent manner, (25).

Many attempts have been made to use AgNPs as an anticancer agent and they have all turned up to be positive (26). The size reduction of nanoparticles plays an important role in improving their bio-availability and compatibility for therapeutical applications in diseases like cancer (27). The developing more effective and less toxic anticancer agents, including natural products, is necessary to prevent or delay the process from hepatocarcinogenesis (28). Silver nanoparticles have been recorded to extend chemopreventive activities through controlling the tumor in vivo (29).

Conclusion:

Silver nanoparticles synthesized by the green method using Crocus sativus L can reduce the carcinogenic effect of diethyl-nitrosamine which induce hepatocellular carcinoma.

References:

8. Elechiguerra JL., Burt JL., Morones JR., Camacho-Bragado A.,

دقائق الفضة النانوية المخلقة خضراء باستخدام مستخلص الزعفران تحد من تكون السرطانات في الكبد الجرذان

 Nirvan Al-Thamer, Amany Al-Mahdi

1 مركز العراق للسرطان والوراثة الطبية / الجامعة المستنصرية
2 كلية العلوم / جامعة بابل
3 كلية الطب / الجامعة المستنصرية

الخلاصة:
جرى دراسة فدرة تأثير دقائق الفضة النانوية المصنعة بالطريقة الخضراء للحد من تسرطن الكبد في ذكور الجرذان البيضاء بعد استخدام المادة المسرطنة ثنائي مثيل نايتروز أمين. ثلاثين من الجرذان البيضاء أوزانها تتراوح بين (200-150) غم ووضعت في البيت الحيواني التابع للمركز العراقي للسرطان والوراثة الطبية. قسمت إلى خمسة مجموعات كل مجموعة تتكون من ستة جرذان كانت المجموعة الأولى مجموعة السيطرة والمجموعة الثانية لمولتير/CCl4 ملغ/كغم من وزن الجسم (تليها حقن تحت الجلد ليلية حقن تحت الجلد 3/4 من مولتير) لمدة 6 أسابيع. المجموعة الثالثة فرد من الحقن البريتوني (200 ملغ/كغم من وزن الجسم) ثم حقن دقائق الفضة النانوية لمدة 6 أسابيع. المجموعة الرابعة (المجموعة العلاجية) فرد من حقن دقائق الفضة النانوية ثم حقن مولتير ثم حقن دقائق الفضة النانوية مرة أخرى. المجموعة الخامسة الواقفية فرد من حقن دقائق الفضة النانوية بعد حقن مولتير. الفئات في نهاية التجربة واظهرت الدراسة النسبية لخلايا الكبد في المجموعة الأولى ان نسيج الكبد طبيعي، والمجموعة الثانية أظهرت تناخر وتعقيبات دهنية، والمجموعة الثالثة أظهرت تناخر خلايا الكبد وانتشار القناة الصفراوية، والمجموعة الرابعة أظهرت تناخر وتهاب الخلايا واحتران وتعقيبات دهنية. المجموعة الخامسة أظهرت تناخر وتهاب الخلايا وتعقيبات دهنية.